MATH 2028 Green's Theorem
GOAL: Discuss Green's Theorem in \mathbb{R}^{2} and its applications
We now consider the special case of line integrals in \mathbb{R}^{2}.

Notation: Given any vector field $F: U \rightarrow \mathbb{R}^{2}$ defined on an open set $U \subseteq \mathbb{R}^{2}$, we write in components:

$$
F=(P, Q) \text { and } d \vec{r}=(d x, d y)
$$

THEN: $F \cdot d \vec{r}=\underbrace{P d x+Q d y}_{\text {"-form" on } U}$
Hence, we shall also use the notation for line integrals:

$$
\int_{C} F \cdot d \vec{r}=\int_{C} P d x+Q d y
$$

We are now ready to state the $1^{\text {st }}$ Fundamental Theorem for Multi-variable Calculus" for line integrals in \mathbb{R}^{2}.

Green's Theorem: Let $F: U \rightarrow \mathbb{R}^{2}$ be a C^{\prime} vector field defined on an open set $U \subseteq \mathbb{R}^{2}$.

THEN: for any compact domain $\Omega \subseteq U$ with piecenise C^{\prime} boundary $C=\partial \Omega$. oriented "positively" st. the region Ω always lie on the left of C. we have

$$
\int_{C} P d x+Q d y=\iint_{\Omega}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

where $F=(P, Q)$ in components.

Remarks: (1) Since F is a C^{\prime} vector field, the components P and Q are C^{\prime} functions, and thus $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is a cts function, hence integrable on U.
(2) The bound any curve $C=\partial \Omega$ can be "dis connected". For example.

Proof of Green's Theorem for rectangles:
We now give the proof when Ω is a rectangle $R \subseteq \mathbb{R}^{2}$. The general case will be proved later.

Main Idea: Fubini's Thu!

$$
\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\iint_{R} \frac{\partial Q}{\partial x} d A-\iint_{R} \frac{\partial P}{\partial y} d A
$$

Fubin:

$$
=\int_{c}^{d} \int_{a}^{b} \frac{\partial Q}{\partial x} d x d y-\int_{a}^{b} \int_{a}^{d} \frac{\partial P}{\partial y} d y d x
$$

Fund. Then. Fha $=\int_{c}^{d} Q(b, y)-Q(a, y) d y-\int_{a}^{b} P(x, d)-P(x, c) d x$
Calculus $\int_{\int F \cdot d \vec{r}}$

$$
\begin{aligned}
& =\int_{a}^{b} P(x, c) d x+\int_{c}^{d} Q(b, y) d y-\int_{C_{1}}^{b} P(x, d) d x \\
& -\int_{c}^{b} P \cdot(a, y) d y=\int_{-C_{3}}^{d} F \cdot d \vec{r} \\
& =\int_{c} P d x+Q d y
\end{aligned}
$$

Example 1: Evaluate $\int_{C} F \cdot d \vec{r}$ where

$$
F=\left(x^{2}-y^{2} \cdot 2 x y\right)
$$

and $C \subseteq \mathbb{R}^{2}$ is the unit square as shown oriented counterdockwise.

Solution 1: Direct computation
Parametrize C_{1} by $\gamma_{1}(t)=(t, 0), 0 \leq t \leq 1$

$$
\int_{C_{1}} F \cdot d \vec{r}=\int_{0}^{1} t^{2} d t=\frac{1}{3}
$$

Parametrize C_{2} by $\gamma_{2}(t)=(1, t), 0 \leq t \leq 1$

$$
\int_{C_{2}} F \cdot d \vec{r}=\int_{0}^{1} 2 t d t=1
$$

Parametrize $-C_{3}$ by $\gamma_{3}(t)=(t, 1), 0 \leq t \leq 1$

$$
\int_{C_{3}} F \cdot d \vec{r}=-\int_{0}^{1}\left(t^{2}-1\right) d t=\frac{2}{3}
$$

Parametrize $-C_{4}$ by $\gamma_{4}(t)=(0, t), 0 \leq t \leq 1$

$$
\int_{C_{4}} F \cdot d \vec{r}=-\int_{0}^{1} 0 d t=0
$$

Thus. $\int_{C} F \cdot d \vec{r}=\frac{1}{3}+1+\frac{2}{3}+0=2$

Solution 2: Use Green's Theorem

Note that $C=\partial \Omega$ with the "positive orientation as shown: By Green's Theorem.

$$
\begin{aligned}
& P=x^{2}-y^{2} \\
& Q=2 x y
\end{aligned}
$$

$$
\begin{aligned}
\int_{C} F \cdot d \vec{r} & =\iint_{\Omega}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
& =\iint_{\Omega}[2 y-(-2 y)] d A \\
& =\int_{0}^{1} \int_{0}^{1} 4 y d y d x=2
\end{aligned}
$$

We can compute the area using Green's Theorem. Suppose $\Omega \subseteq \mathbb{R}^{2}$ is a bod region with piecenise C^{\prime} boundary. THEN:

$$
\operatorname{Area}(\Omega)=\int_{\partial \Omega} x d y=\int_{\partial \Omega}-y d x=\frac{1}{2} \int_{\partial \Omega}-y d x+x d y
$$

Reason: The vector fields

$$
F=(0, x), F=(-y, 0), F=\left(-\frac{y}{2}, \frac{x}{2}\right)
$$

all satisfy $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$. Hence, we have Green's Them

$$
\operatorname{Area}(\Omega)=\iint_{\Omega} 1 d A=\iint_{\Omega} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A=\int_{\partial \Omega} F \cdot d \vec{r}
$$

Example 2 : Compute the area of the ellipse

$$
\Omega:=\left\{(x, y) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right.\right\} \leq \mathbb{R}^{2}
$$

Solution: Parametrize C by

$$
\begin{aligned}
\gamma(t) & =(a \cos t \cdot b \sin t), 0 \leq t \leq 2 \pi \\
\operatorname{Area}(\Omega) & =\int_{C} x d y \\
& =\int_{0}^{2 \pi} a \cos t \cdot b \cos t d t \\
& =a b \int_{0}^{2 \pi} \cos ^{2} t d t=\pi a b
\end{aligned}
$$

Recall that a vector field $F: U \rightarrow \mathbb{R}^{2}$ is conservative (on u) if \exists potential function $f: u \rightarrow \mathbb{R}^{2}$ sit. $F=\nabla f$.

Write $F=(P, Q)$, then a necessary condition for F to be conservative is the following:

Compatibility condition: $\quad \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$

Q: When is (*) sufficient?
A: when u is "simply connected".
Def: A subset $u \subseteq \mathbb{R}^{2}$ is simply connected if it is connected and every closed curve in U can be continuously shrunk to a point without leaving u.

Egg.)

U simply connected
non. E.g.)
This closed curve CANMOT be shrunk to a point continuously IN U

U NOT simply connected

Prop: If $F: U \rightarrow \mathbb{R}^{2}$ is a C^{\prime} vector field defined on an open set $U \subseteq \mathbb{R}^{2}$ which is simply connected and that ($*$) is satisfied.

THEN: F is conservative on U.

Proof: By Tho in L12, it suffices to show that $\int_{C} F \cdot d \vec{r}=0$ for $A L L$ closed cure $C \subseteq U$.

Take ANY such closed cure $C \subseteq U$.

U simply \rightarrow Can be continuously shrunk connected to a point in U
$\Rightarrow C$ bounds a region $\Omega \leq U$ sit $C=\partial \Omega$

By Green's Theorem, writing $F=(P, Q)$.

$$
\int_{C} F \cdot d \vec{r}=\iint_{\equiv 0} \underbrace{\left.\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)}_{\equiv \text { using }(n)} d A=0 \quad \text { DONE! }
$$

Example 3: Consider the following vector field

$$
F=\left(-\frac{y}{x^{2}+y^{2}} \cdot \frac{x}{x^{2}+y^{2}}\right)=(P, Q)
$$

defined on $U=\mathbb{R}^{2},\{0\} \subseteq \mathbb{R}^{2}$. Note that

$$
\begin{aligned}
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} & =\left(\frac{1}{x^{2}+y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)-\left(-\frac{1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right) \\
& =\frac{2}{x^{2}+y^{2}}-\frac{2\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \equiv 0
\end{aligned}
$$

ie. F satisfies the compatibility condition (*). However, F is NOT conservative on $U=\mathbb{R}^{2},\{0\}$.

Reason: Take $C \subseteq U$ as the unit circle parametrized by $\gamma(t)=(\cos t, \sin t) .0 \leqslant t \leqslant 2 \pi$

$$
\begin{aligned}
\int_{C} F \cdot d \vec{r} & =\int_{0}^{2 \pi}(-\sin t, \cos t) \cdot(-\sin t, \cos t) d t \\
& =\int_{0}^{2 \pi} 1 d t=2 \pi \neq 0
\end{aligned}
$$

In fact. if we consider any closed cure $\widetilde{C} \subseteq u$ which is "simple". ie. it does not have any
self - intersection. then we still have

$$
\int_{\tilde{C}} F \cdot d \vec{r}=2 \pi
$$

Reason:
Counter dace vise

Take any small circle C "inside" the region bounded by $\underset{C}{c}$ centered at the origin.
THEN: \tilde{C} and C together bound a region $\left.\Omega \subseteq U=\mathbb{R}^{2}, 10\right\}$

Since F satisfies (*) everywhere on Ω.

$$
0 \stackrel{(k)}{=} \iint_{\Omega}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\int_{\widetilde{C}} F \cdot d \vec{r}-\int_{C} F \cdot d \vec{r}
$$

Hence, $\int_{\bar{C}} F \cdot d \vec{r}=\int_{C} F \cdot d \vec{r}=2 \pi$ computation

